Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. In early 2020, an international team set out to investigatetrade-wind cumulus clouds and their coupling to the large-scale circulationthrough the field campaign EUREC4A: ElUcidating the RolE ofClouds-Circulation Coupling in ClimAte. Focused on the western tropicalAtlantic near Barbados, EUREC4A deployed a number of innovativeobservational strategies, including a large network of water isotopicmeasurements collectively known as EUREC4A-iso, to study the tropicalshallow convective environment. The goal of the isotopic measurements was toelucidate processes that regulate the hydroclimate state – for example, byidentifying moisture sources, quantifying mixing between atmospheric layers,characterizing the microphysics that influence the formation and persistenceof clouds and precipitation, and providing an extra constraint in theevaluation of numerical simulations. During the field experiment,researchers deployed seven water vapor isotopic analyzers on two aircraft,on three ships, and at the Barbados Cloud Observatory (BCO). Precipitationwas collected for isotopic analysis at the BCO and from aboard four ships.In addition, three ships collected seawater for isotopic analysis. All told,the in situ data span the period 5 January–22 February 2020 andcover the approximate area 6 to 16∘ N and 50 to 60∘ W,with water vapor isotope ratios measured from a few meters above sea levelto the mid-free troposphere and seawater samples spanning the ocean surfaceto several kilometers depth. This paper describes the full EUREC4A isotopic in situ data collection– providing extensive information about sampling strategies and datauncertainties – and also guides readers to complementary remotely sensedwater vapor isotope ratios. All field data have been made publicly availableeven if they are affected by known biases, as is the case for high-altitudeaircraft measurements, one of the two BCO ground-based water vapor timeseries, and select rain and seawater samples from the ships. Publication ofthese data reflects a desire to promote dialogue around improving waterisotope measurement strategies for the future. The remaining, high-qualitydata create unprecedented opportunities to close water isotopic budgets andevaluate water fluxes and their influence on cloudiness in the trade-windenvironment. The full list of dataset DOIs and notes on data quality flagsare provided in Table 3 of Sect. 5 (“Data availability”).more » « less
-
The Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC) took place from 7 January to 11 July 2020 in the tropical North Atlantic between the eastern edge of Barbados and 51∘ W, the longitude of the Northwest Tropical Atlantic Station (NTAS) mooring. Measurements were made to gather information on shallow atmospheric convection, the effects of aerosols and clouds on the ocean surface energy budget, and mesoscale oceanic processes. Multiple platforms were deployed during ATOMIC including the NOAA RV Ronald H. Brown (RHB) (7 January to 13 February) and WP-3D Orion (P-3) aircraft (17 January to 10 February), the University of Colorado's Robust Autonomous Aerial Vehicle-Endurant Nimble (RAAVEN) uncrewed aerial system (UAS) (24 January to 15 February), NOAA- and NASA-sponsored Saildrones (12 January to 11 July), and Surface Velocity Program Salinity (SVPS) surface ocean drifters (23 January to 29 April). The RV Ronald H. Brown conducted in situ and remote sensing measurements of oceanic and atmospheric properties with an emphasis on mesoscale oceanic–atmospheric coupling and aerosol–cloud interactions. In addition, the ship served as a launching pad for Wave Gliders, Surface Wave Instrument Floats with Tracking (SWIFTs), and radiosondes. Details of measurements made from the RV Ronald H. Brown, ship-deployed assets, and other platforms closely coordinated with the ship during ATOMIC are provided here. These platforms include Saildrone 1064 and the RAAVEN UAS as well as the Barbados Cloud Observatory (BCO) and Barbados Atmospheric Chemistry Observatory (BACO). Inter-platform comparisons are presented to assess consistency in the data sets. Data sets from the RV Ronald H. Brown and deployed assets have been quality controlled and are publicly available at NOAA's National Centers for Environmental Information (NCEI) data archive (https://www.ncei.noaa.gov/archive/accession/ATOMIC-2020, last access: 2 April 2021). Point-of-contact information and links to individual data sets with digital object identifiers (DOIs) are provided herein.more » « less
An official website of the United States government
